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Review
Glossary

Anthropophilic behavior: mosquito preference for breeding sites created by

human activities, using human dwellings as resting places and humans as a

source of bloodmeal.

Fitness: here, we consider it to be the success of individuals or populations in

producing offspring, relative to others.

Refractoriness: intrinsic ability of Anopheline species or populations to not

replicate and not transmit different Plasmodium species (or strains).

Resistance: mechanisms of host defense responsible for reducing parasite

burden, it includes the immune response.

Susceptibility: intrinsic ability of Anopheline species or populations to

replicate and transmit different Plasmodium species (or strains). It is

approximated by experimental transmissions.

Tolerance: in tolerance, the host fights the disease by repairing damage caused

by the infection, for example tissue repair.
In human malaria, transmission intensity is highly de-
pendent on the vectorial capacity and competence of
local mosquitoes. Most mosquitoes are dead ends for
the parasite, and only limited ranges of Anopheles are
able to transmit Plasmodium to humans. Research to
understand the determinants of vectorial capacity and
competence has greatly progressed in recent years;
however, some aspects have been overlooked and the
evolutionary pressures that affect them often neglected.
Here, we review key factors of vectorial capacity and
competence in Anopheles, with a particular focus on the
most important malaria vector Anopheles gambiae. We
aim to point out selection pressures exerted by Plasmo-
dium on Anopheles to improve its own transmission and
discuss how the parasite might shape the vector to its
benefit.

Vectorial capacity and competence in malaria
transmission
The vectorial capacity of a mosquito population largely
determines the intensity of vector-borne disease trans-
mission (Box 1). The vector competence (Glossary) is also
a crucial parameter for the pathogen to be transmitted. In
human malaria, vectorial systems are limited in number.
Only Anopheles females are able to transmit Plasmodium
to humans, and, among the more than 450 Anopheles
species known, �60 are considered to be actual vectors
in the wild [1]. Vectorial capacity and competence also
present quantitative features in the sense that some
species have a major role in malaria transmission, and
others have a minor role. Even at the species level, some
populations or individual mosquitoes can have different
impacts on transmission [1]. Research to understand the
genetic determinants of capacity and competence has
greatly benefited from the availability of the whole genome
sequence for Anopheles gambiae [2] with the identification
of candidate genes in progress. However, the different
aspects of vectorial capacity and competence have not been
uniformly studied, and some have been largely overlooked.
For example, rapid progression has been recently made in
mosquito immunity and olfaction genetics [3–5]; however,
genetic determinants of parasite virulence and mosquito
adaptation to human environments remainminor research
areas. Moreover, evolutionary pressures on vectors, in-
cluding the forces exerted by the parasites they transmit,
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Liberté, 01 BP 545 Bobo-Dioulasso 01, Burkina Faso.

1471-4922/$ – see front matter � 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.pt.2009.12
can have major consequences onmalaria transmission and
are rarely considered for their impact on malaria control
measures. Here, we address the major aspects of vectorial
capacity and competence and the evolutionary forces that
affect them inAnopheles: the vector longevity; the duration
of sporogonic development; the contact between the mos-
quito and vertebrate host suitable for the parasite; and the
susceptibility/resistance of the vector to the parasite. We
aim to point out selection pressures exerted by Plasmo-
dium on malaria vectors to improve transmission, particu-
larly in the Plasmodium falciparum–An. gambiae system,
and discuss their relevance in malaria control.

Vector longevity
Malaria parasite development in vector mosquitoes
requires passing through two epithelia and results in
thousands of parasites [6]. The sporogonic development
might therefore impose some degree of virulence (Glossary)
and affect the fitness (Glossary) of the vector host. The
infection-induced fitness cost can be expressed as a
reduction of survival or fecundity [7] but an effect on
survival would have a much higher impact on malaria
transmission (Box 1) as the vector must live long enough
to become infectious. Several mechanisms of Plasmodium
virulence to mosquito vectors can be expected. Some were
tested but mainly in experimental Plasmodium–Anopheles
systems. The results on reduction of longevity are conflict-
ing with many studies showing vector survival to be unaf-
fected by infection, but some showing the opposite [8].
Potential mechanisms of virulence are: (i) the passage of
parasites through the mosquito epithelia that can cause
cell damage. It was observed that Plasmodium sp. causes
Vector competence: most authors consider that it is synonymous to

susceptibility.

Virulence: here, it is interpreted as the negative effects caused by the parasite

on the mosquito in terms of survival or fecundity.
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Box 1. Vectorial capacity and basic reproductive rate

Vectorial capacity is defined as ‘the average number of inoculations

with a specified parasite, originating from one case of malaria in

unit time that the population would distribute if all the vector

females biting the case become infected’. It can be summarized by

the Macdonald formula [61].

C : ðma2 pn=� ln pÞ
m is the vector–host ratio (i.e. the anopheline density in relation to

humans).a is the human feeding rate: the number of human bites per

mosquito, per day.p is the daily survival rate (i.e. the probability of a

mosquito surviving one whole day). lnp is the natural logarithm of p.

The mosquito longevity is 1/p.n is the number of days required for

sporogonic development (i.e. the time necessary for parasites to

complete development from ingested gametocytes in the bloodmeal

to sporozoites in the salivary glands).

The basic reproductive rate (R0) is the total number of malaria

cases derived from one infective case that the mosquito population

would distribute to man. R0 must equal at least 1 for the disease to

persist or spread. For values less than 1, the disease will regress. It is

the product of the vectorial capacity, the infectiousness of vectors to

humans (b) and humans to vectors (c), and the human infectious

period (1/r):

R0 ¼ ðma2 pn=� ln pÞ � bc � 1=r

c is closely linked to the vector competence of mosquitoes to Plas-

modium species.

In R0, two parameters are more important than the others: ‘a’ and

‘p’. ‘a’, the human feeding rate is squared because the mosquito

needs to bite twice to transmit the parasite, firstly to become

infected, and secondly to infect, after completion of sporogonic

development. For this reason, a small change in mosquito feeding

preference will have a serious impact on malaria transmission. Even

more importantly, ‘p’, the survival rate, owing to its power n, has a

disproportionate impact on transmission. As the sporogonic devel-

opment of Plasmodium is relatively long (e.g. for P. falciparum: 12–

23 days [30]) in relation to mosquito lifespan (2–4 weeks for An.

gambiae [1]), mosquitoes can be infectious for a limited period only.

Small changes in vector longevity can dramatically affect malaria

transmission [62]. Modeling highlights that longevity is the factor

with the biggest impact on the basic reproductive rate (R0), even

more so than initially suggested by Macdonald [61].
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host cell damage, followed by apoptosis [9,10]; however, the
effect of infection-induced apoptosis on mosquito survival
remains unclear. Programmed cell death was observed in
the midgut cells but also in the follicular epithelial cells in
the ovaries, resulting in reduced egg production. The cell
damage could therefore impact fecundity rather than sur-
vival [11]. (ii) The infection generates a mosquito immune
response that can be costly. Parasite invasion of mosquito
vectors in model and natural systems induces a massive
immune response [12,13] and several studies in insects
demonstrate that such an induced response can affect
fecundity [14] or longevity [15]. In Anopheles, a reproduc-
tive cost was found [16] and An. gambiae mosquito strains
selected for refractoriness to rodent parasites show
reduced fitness compared with susceptible strains
[17,18]. This suggests that developing an immune response
induces a fitness cost, but more research is needed to
establish whether there is an effect on mosquito survival.
(iii) Competition for energy resources between the host and
the developing parasites can have a negative impact on the
host. In agreementwith this hypothesis, a reduced survival
was observed in Anopheles stephensi infected with rodent
parasites and was most striking under the condition of
glucose deprivation [19]; moreover, infection increases
2

mosquito sugar feeding [20]. (iv) Another potential cost
of infection is that the parasite can affect mosquito beha-
vior and cause mortality. In the natural An. gambiae–P.
falciparum system, a higher feeding associated mortality
was observed, probably as a result of a decreased efficiency
in bloodmeal intake, and increased feeding activity [21].
This is, in fact, the only effect of infection on mosquito
survival to be observed in this natural system. It could be
the result of compensatory behavior by the mosquito to
obtain sufficient blood for its trophogonic cycle, or a manip-
ulation of the behavior of the mosquito by the parasite to
increase its transmission by multiplying mosquito blood
feeds [22]. Exploiting compensatory behavior can be con-
sidered a particularly well-developed strategy of manip-
ulation by the parasite [23].

Therefore, in spite of the potentially high virulence of
Plasmodium to mosquito vectors, an effect on vector long-
evity is not always observed. The reduction of fecundity is a
more common cost of infection and has only a minor effect
on transmission. It is likely that evolutionary forces
selected parasites affectingmosquito fecundity rather than
that affecting mosquito survival, and this eventually bene-
fited parasite transmission [11]. Moreover, meta-analysis
of several published studies demonstrated that infection-
induced mortality is less likely to be found in natural
systems than in experimental vector–parasite species com-
binations [8], which could be explained by evolutionary
forces acting between coevolved parasites and hosts. As
both vector and parasite share the interest of vector sur-
vival, parasites might evolve towards low virulence,
whereas, in parallel, mosquitoes less affected by infection
would be selectively advantaged. For this to be true, viru-
lence in Plasmodium–Anopheles interactions must have a
genetic basis; this has been shown in some experiments,
with both parasite and mosquito genetics affecting infec-
tion success [24–26]. However, the evolution of virulence is
also highly dependent on environmental factors [19,24,25].
The fact that P. falciparum and An. gambiae share an
evolutionary history, by contrast to laboratory model sys-
tems,might have led to the selection ofmechanisms in both
the parasite and the mosquito to reduce any negative
impact on host survival and subsequently increase the
chances of parasite transmission.

Recent studies emphasize the concept of tolerance (Glos-
sary) that might play a role in host defense against the
parasite in parallel to resistance (Glossary). Tolerance is
expected to be costly and could also impact survival or
fecundity as the host spends resources to repair any
damage the infection has caused. But, unlike resistance,
tolerance to the effects of disease-induced mortality has a
positive effect on parasite development [27,28] and could
be an important mechanism in Plasmodium–Anopheles
interactions. This opens a new avenue of research in the
malaria vectorial system.

Today, there is a crucial need to decipher parasite
effects on mosquito fitness, the mechanisms involved
and their genetic and environmental determinants to pre-
dict how parasite virulence evolves. This is particularly
relevant for the prospect of using genetically modified
mosquitoes (GMMs) to control malaria transmission. A
recent study showed that the cost of genetic transformation



Box 2. Vector longevity, insecticide resistance and malaria transmission control

Insecticides reduce mosquito longevity, the most important para-

meter of vectorial capacity. However, insecticide resistance limits the

efficacy of vector–control measures and can interact with the parasite.

New strategies could limit the emergence of resistance.

Selection pressures for insecticide resistance in malaria control

The use of insecticides for agriculture or public health results in a

strong selection pressure [63]. In malaria vectors, multiple resistance

mechanisms appeared independently and/or were able to spread in

spite of strong gene flow barriers. For instance, several mutation

events were selected independently in An. gambiae [64], and through

introgression were passed to other members of the Gambiae complex

[65].

Effect of insecticide resistance on infection cost

Genetic insecticide resistance was shown to impact the infection level

in the invertebrate host. For instance, several studies showed that

insecticide resistant Culex were more heavily infected by Wolbachia

and suffered higher infection costs [66]. By contrast, in the case of

filarial infection, insecticide resistant mosquitoes were less infected

than susceptible ones. Insecticide resistance might affect parasite

transmission in mosquitoes by changing potential redox reactions in

several tissues and in doing so it was proposed that it could provide

direct protection against infection [67]. To our knowledge, no studies

have been published on the relationship between insecticide

resistance in Anopheles and infection level/cost of Plasmodium,

although they would be highly relevant to malaria control.

Killing mosquitoes responsible for malaria transmission and limiting

insecticide resistance

Today, new elegant strategies are emerging to reduce vector long-

evity and subsequently reduce malaria transmission [68]. One

concept is to use late-life acting (LLA) insecticides that would target

older mosquitoes. The benefit of such a strategy is that it kills

mosquitoes before they become infectious but after the majority of

mosquito reproduction has taken place, limiting the selective

pressure for resistance mechanisms. The LLA insecticides aim to kill

the mosquito some time after exposure or target physiologically

vulnerable mosquitoes based on the logic that older mosquitoes will

be more sensitive. Insecticides with a new mode of action or new

mode of administration are needed. Knowledge on mechanisms of

senescence in mosquitoes or on the effects of pathogens could allow

the development of alternative strategies such as the use of

pathogens (e.g. Wolbachia or fungal pathogens [69]) with potentially

synergistic effects with Plasmodium or insecticides on survival

reduction.
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could be compensated for by the ability to resist infection in
a laboratory model [29]. The potential success of the GMM
strategy in the wild will be highly dependent on the
balance between this cost and benefit to the mosquito,
an area closely linked to the prevalence and virulence of
infection. Moreover, vector longevity is likely to become a
major target to control malaria transmission, for which we
need a better understanding of the interactions between
vectors, pathogens and insecticides in natural conditions
(Box 2).

Incubation time of the parasite in the vector
The duration of sporogonic development is also a crucial
factor in vectorial capacity. The earlier the sporozoites
reach the salivary glands, the greater the opportunity to
be transmitted; this therefore exerts a strong selective
pressure to reduce the duration of sporogonic development.
This assumption contradicts what we observe, as the de-
velopment time in the vector is relatively long for Plasmo-
dium (12–23 days [30]). Koella [22] hypothesized that this
long duration of sporogonic development is necessary to
produce a high number of sporozoites. Such a high number
of parasites disturbs the efficacy of blood feeding and
induces a higher biting rate and thus could be responsible
for vector behavior manipulation [22]. In terms of trans-
mission strategy, the parasite could be transmitted (i) as
early as possible or (ii) later, when numbers of sporozoites
are higher. As we observe this higher biting rate in infec-
tious mosquitoes and a long sporogonic development time,
it seems that the second strategy was selected. A higher
biting rate comes with a greater risk of death and is likely
to infer a manipulation cost on mosquito survival; this
could, however, be compensated for by the benefit to the
parasite in increasing its transmission.

A method to optimize the parasites adaptive interest in
developing high numbers of sporozoites and shortening
their development time is to carry out the cycle at its
optimal temperature. It can be hypothesized that the
parasite manipulates its vector in this way to increase
transmission. Indeed, the sporogony dynamics are depend-
ent on temperature; with a species-specific threshold,
temperature is negatively correlated with development
time [30]. A parasite-induced behavioral modification
has been shown in P. mexicanum-infected phlebotomine
sand flies, making themmore attracted to higher tempera-
tures than are non-infected individuals [31]. This suggests
that Plasmodium might be capable of manipulating mos-
quito temperature preferences to increase their vectorial
capacity, which warrants investigation in the natural
human malaria system.

Human–mosquito contact and human biting rate
The density of vectors in contact with humans and the
vertebrate host preference for mosquito bloodmeals are
closely related. The anthropophilic behavior (Glossary)
of An. gambiae is an important factor in its high vectorial
capacity (Box 1). The hypothesis developed by Coluzzi
explains the enhanced contact between humans and An.
gambiae some thousands of years ago and the subsequent
drastic changes in vectorial capacity [32]. An extensive
penetration of forests began �3000 years ago by Bantu
populations, which have established agriculture through
deforestation [33]. The An. gambiae ancestors, previously
not able to survive in forests, could then find suitable sunny
breeding sites and invade this new ecological niche. In
parallel, a strong selection pressure against cattle, owing
to trypanosomiasis, had the consequence that humans
were the most frequent large vertebrate hosts available
in such areas [32]. By providing the breeding sites and the
bloodmeal to the newly arrived Anopheles, humans served
as ‘board and lodging’, and selected the highly specialized
species, An. gambiae, whose biology became very depend-
ent on humans. This specialization to humans has been
differentially selected in the members of the An. gambiae
complex [32]. The adaptation of these different species to
diverse environments and their related trophic behavior
3



Review Trends in Parasitology Vol.xxx No.x

TREPAR-903; No of Pages 7
was accompanied by the fixation of different chromosomal
arrangements, which are known to protect coadapted
alleles from recombination [34]. The association between
chromosomal inversions and host preference provides evi-
dence of a genetic basis for trophic behavior [35] andmakes
it susceptible to selective forces. The rapid adaptation of
An. gambiae s.s. to humans and the specialization of the
members of the complex to diverse environments is a clear
illustration of their genetic diversity and plasticity.

The adaptation ofAn. gambiae ancestors to humanswas
accompanied by a dramatic increase in P. falciparum
transmission. The traditional view of the story highlights
the benefit of vector adaptation to its vertebrate host, but it
could also be as a result of selection pressures exerted by
the parasite to increase its transmission that might have
strengthened the specialization. Several experiments
revealed the ability of Plasmodium to modify the trophic
behavior of the mosquito host. Vectors show a preference
for biting gametocyte-infected human hosts [36] and preg-
nant women (who are generallymore heavily infected) [37],
and infected vectors are more aggressive [38,39]. One
might think that the proportion of infected mosquitoes
in nature would not allow strong selection pressure to be
exerted by the parasite on mosquito behavior. However,
considering the daily mortality of An. gambiae (estimated
at 10–18% [40]) and the long sporogonic development (10–

14 days), the 5% sporozoite infection rate frequently
observed [41] means that a large proportion ofAn. gambiae
are in contact with the parasite during their lifespan, and
suggests that trophic behavior might be under selective
pressures to increase parasite transmission [42].

Genetic determinants of adaptation to human environ-
ments and trophic behavior of malaria vectors remain
almost unknown. Current investigation is based on the
assumption that olfaction has a crucial role in behavior, at
least in mosquito host choice for a particular bloodmeal.
Recent descriptions of cellular and molecular olfactory
components [4,5] open promising avenues for discovering
how mosquitoes choose their vertebrate host for a blood-
meal and therefore the potential to modify its trophic
behavior to limit malaria transmission.

Susceptibility and refractoriness to infection
A mosquito can be considered as a competent malaria
vector if the Plasmodium parasite can internally complete
its cycle from gametocytes in the bloodmeal to sporozoites
in the saliva. We can distinguish different levels of
susceptibility (Glossary) for human malaria parasites: a
qualitative level with complete refractoriness (Glossary) of
non-Anopheles species and a quantitative level among
Anopheles species.

Numerous culicidae are in close contact with humans
and can, in some cases, transmit infectious agents to them.
Nevertheless, to our knowledge, no reports show human
malaria parasite development in mosquitoes other than
Anopheles. The density and the human biting rates of non-
malaria vector mosquitoes can be high in areas of intense
malaria transmission. Therefore, the ingestion of P. falci-
parum by non-vector species must be frequent; however,
the vector competence has not been selected in a wide
range of species. This suggests that crucial factors avoiding
4

infection in non-competent mosquito species must be
highly differentiated from competent ones. The study of
early parasite developmental steps in non-malaria vectors
could therefore be used to point out essential mosquito
factors in Anopheles–Plasmodium interactions and shed
light on new targets for transmission blocking strategies.

In Anopheles, the susceptibility to human Plasmodium
parasites appears to be more quantitative. Experimental
infections of Anopheles species that do not naturally trans-
mit P. falciparum often show low levels of infection but
rarely none [43,44]. The outcome of infection depends on
the mosquito response and the ability of the parasite to
evade it. Indeed, the presence of infectious agents in the
mosquito is considered as non-self and induces an immune
response that can limit the infection efficiency [45]. Exten-
sive work, mainly using model parasite–vector systems,
partially deciphered the An. gambiae immune system
[46,47]. Today, more effort is invested in research on
natural vector–parasite systems. Genes playing a role in
the mosquito response to P. falciparum have been ident-
ified [12,13]; a genetic island of resistance was mapped
demonstrating that genetic variants play a role in suscepti-
bility and resistance in mosquito vectors, and a candidate
gene encoding a leucine-rich protein (APL1) shows allele-
dependant resistance [48,49]. Comparisons of different
vector–parasite combinations revealed that parts of the
mosquito response mechanism are general and effective
against several infectious agents [12,13], whereas others
are more specific [13,50]. For instance, melanization
appeared to be a baseline response to Plasmodium infec-
tion or other foreign bodies (e.g. sephadex beads) in An.
gambiae [51] as in other mosquito species [43]. However, in
the case of An. gambiae infected by P. falciparum, mela-
nization does not appear as the major infection control
mechanism, although it is occasionally observed in exper-
imentally infected mosquitoes [48,52]. Also, silencing of
key melanization genes did not affect the level of infection
by P. falciparum: this contrasts with what was obtained
when infected by P. berghei [50]. Thus, the mechanism of
melanization appears to be a highly efficient mosquito
response against non-self, except against the coadapted
human malaria parasite. This suggests that Plasmodium
either suppresses the immune response or develops eva-
sionmechanisms [51,53]. The fact that key immune related
mosquito genes are upregulated during P. falciparum in-
fection [12,13,50] favors the hypothesis of evasion. Its
capabilities to evade the response could be a major factor
in vector competence.

The evolutionary arms race between parasites and hosts
predicts constant evolution of mosquito refractoriness and
parasite evasion mechanisms. The high diversity and
plasticity of Plasmodium in vertebrate hosts leads to the
assumption that the parasite evolves faster, and adapts
more rapidly, than the host, and is expected to transmit
more successfully through a local coevolved vector popu-
lation, rather than a non-local one. In other words, the
parasite would be the fastest runner in the host–parasite
race. In agreement, several European Anopheles species
that were tested for vector competence for P. falciparum
showed the development of low numbers of parasites com-
pared with An. gambiae [44]. These European species are
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therefore competent with low efficiency for P. falciparum
transmission. Thus, the high vector competence of An.
gambiae could be partially because of the fact that African
P. falciparum is well adapted to this vector, and the
frequency and intensity of contacts between the parasite
and the mosquito have determined the level of coadapta-
tion. This would explain the efficient transmission of P.
falciparum by its local vectors, but predicts that an intro-
duction of P. falciparum in areas lacking this parasite,
where vector populations are not coadapted, would not
rapidly lead to a high level of transmission. However, it
cannot be neglected that new contacts between P. falci-
parum and Anopheles are sometimes efficient: studies
carried out in non-natural host–parasite combinations
sometimes reveal high vector susceptibility [54,55]. It
would be of great interest to be able to predict the success
of new Anopheles–Plasmodium interactions in the context
of drastic environmental changes such as current global
warming.

The outcome of infection is parasite genotype–vector
genotype dependant; no parasite has optimal transmission
in all hosts and no host resists all parasites. As shown by
Lambrechts et al. [56], An. gambiae isofemale lines can be
highly susceptible to some parasite genotypes, and, at the
same time, highly resistant to others. Furthermore, Plas-
modium infectivity and mosquito susceptibility are
environment-dependant [57]. Such genotype–genotype–

environment interactions occur when one parasite geno-
type is more successful (better transmission) with one host
genotype and less with another, but these interactions
change when the host and parasite are exposed to different
environments [58] and are known to affect insect immunity
[59]. The mosquito genome has therefore been thoroughly
searched for genetic determinants of vector susceptibility
or refractoriness, although parasite genetics could be as
important. Moreover, the efficiency of potential mosquito
Figure 1. Schematic representation of feedback in vectorial capacity and competence. R

respectively. Key parameters of vectorial capacity and competence are shaded in gray. H

in the vectorial capacity formula (Box 1). Susceptibility corresponds to vector competenc

benefits to the parasite or the vector (shaded in yellow) and have positive or negative
resistance genes in natural situations might differ depend-
ing on environment and parasite genetics [60]. Studies on
the effect of the environment and parasite diversity on the
evolution of vector competence are crucial in understand-
ing Anopheles–Plasmodium interactions and identifying
suitable targets for malaria control.

Concluding remarks
Vectorial capacity and competence in themalaria system is
the result of constant evolution of mosquitoes in relation to
the other evolving members of the system (parasites and
humans) and a changing environment (Figure 1). Here, we
have outlined the role of the parasite on the evolution of
vectorial capacity and competence. The parasite is likely to
exert selection pressures on the vector to shape it to its
benefit, such as it having a sufficient longevity, a special-
ization for feeding on humans and an immune system that
it can evade. From this point of view, P. falciparum was
extremely successful in selecting its main vector, An.
gambiae. On other vectors, P. falciparum probably exerted
lower selection pressures as a result of less frequent con-
tacts between them, giving those vectors a less important
role in malaria transmission. That is the case for the
phylogenetically related species of the Gambiae complex
toAn. gambiae s.s., a situation similar to that of most other
species complexes. Studies on molecular evolution and the
comparison of genomes between closely related species
with differences in vectorial capacity and competence will
shed light on selective forces specific to vectors. We expect
strong evolutionary forces on genes involved in the most
important parameters of vectorial capacity (longevity, host
choice) and, maybe, lower selective pressure on others
(vector immunity). Such studies could help to find new
targets for malaria control. We currently face the great
challenge of identifying genetic and environmental com-
ponents of vectorial capacity and competence. Field studies
ed and blue arrows indicate positive and negative effects on malaria transmission,

uman biting rate corresponds to ‘a’, longevity to ‘p’ and sporogonic duration to ‘n’

e (Glossary). Adaptive mechanisms are in white. They can induce fitness costs and

impacts on transmission.
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must be multiplied and take into account the evolutionary
forces exerted in the wild, particularly by the parasite.
Considering the evolutionary forces that affect vectorial
capacity and competence is important in determining the
epidemiology of malaria, and considering evolutionary
ecology in the development of control strategies appears
essential.
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